Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.08.22271816

ABSTRACT

The SARS-CoV-2 Omicron variant has become the dominant SARS-CoV-2 variant around the world and exhibits immune escape to current COVID-19 vaccines to some extent due to its numerous spike mutations. Here, we evaluated the immune responses to booster vaccination with intramuscular adenovirus-vectored vaccine (Ad5-nCoV), aerosolized Ad5-nCoV, a recombinant protein subunit vaccine (ZF2001) or homologous inactivated vaccine (CoronaVac) in those who received two doses of inactivated COVID-19 vaccines 6 months prior. We found that the Ad5-nCoV booster induced potent neutralizing activity against the wild-type virus and Omicron variant, while aerosolized Ad5-nCoV generated the greatest neutralizing antibody responses against the Omicron variant at day 28 after booster vaccination, at 14.1-fold that of CoronaVac, 5.6-fold that of ZF2001 and 2.0-fold that of intramuscular Ad5-nCoV. Similarly, the aerosolized Ad5-nCoV booster produced the greatest IFNgamma T-cell response at day 14 after booster vaccination. The IFNgamma T-cell response to aerosolized Ad5-nCoV was 12.8-fold for CoronaVac, 16.5-fold for ZF2001, and 5.0-fold for intramuscular Ad5-nCoV. Aerosolized Ad5-nCoV booster also produced the greatest spike-specific B cell response. Our findings suggest that inactivated vaccine recipients should consider adenovirus-vectored vaccine boosters in China and that aerosolized Ad5-nCoV may provide a more efficient alternative in response to the spread of the Omicron variant.


Subject(s)
COVID-19
2.
International journal of biological sciences ; 18(2):889-900, 2022.
Article in English | EuropePMC | ID: covidwho-1610605

ABSTRACT

Vaccines are proving to be highly effective in controlling hospitalization and deaths associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as shown by clinical trials and real-world evidence. However, a deadly second wave of coronavirus disease 2019 (COVID-19), infected by SARS-CoV-2 variants, especially the Delta (B.1.617.2) variant, with an increased number of post-vaccination breakthrough infections were reported in the world recently. Actually, Delta variant not only resulted in a severe surge of vaccine breakthrough infections which was accompanied with high viral load and transmissibility, but also challenged the development of effective vaccines. Therefore, the biological characteristics and epidemiological profile of Delta variant, the current status of Delta variant vaccine breakthrough infections and the mechanism of vaccine breakthrough infections were discussed in this article. In addition, the significant role of the Delta variant spike (S) protein in the mechanism of immune escape of SARS-CoV-2 was highlighted in this article. In particular, we further discussed key points on the future SARS-CoV-2 vaccine research and development, hoping to make a contribution to the early, accurate and rapid control of the COVID-19 epidemic.

3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-773558.v1

ABSTRACT

Objective: Sepsis is a life-threatening condition, and the mechanism of coagulation dysfunction in sepsis remains unknown. We aimed to investigate the mechanism of coagulation dysfunction in sepsis. Methods: . Standard methods were used to establish the sepsis models and generate gene expression profiles. Bioinformatics analysis was carried out by GO and KEGG enrichment analysis, construction of PPIs and screening of seed genes. Finally, seed genes were used to rebuild the disease-related pathways. Results: . Our experiments revealed an inflammatory response and coagulation dysfunction in both animal and cell models. After determining the DEGs, GO and KEGG functional analysis showed that there is a significant correlation between the inflammatory response and DNA damage. PPI network analysis screened 9 seed genes related to cell mitosis and platelet-derived growth factor receptor signaling pathways. Some of the seed genes were relevant to COVID-19. Conclusions: . This study explored the molecular mechanism of coagulation dysfunction in sepsis models by bioinformatics analysis. This may have guiding significance in reducing the risk of complications in patients with sepsis and improving the effectiveness of treatment.


Subject(s)
COVID-19 , Blood Coagulation Disorders, Inherited
SELECTION OF CITATIONS
SEARCH DETAIL